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ABSTRACT
Purpose Instrumental variable (IV) methods are used increasingly in pharmacoepidemiology to address unmeasured confounding. In this
tutorial, we review the steps used in IV analyses and the underlying assumptions. We also present methods to assess the validity of those
assumptions and describe sensitivity analysis to examine the effects of possible violations of those assumptions.
Methods Observational studies based on regression or propensity score analyses rely on the untestable assumption that there are no
unmeasured confounders. IV analysis is a tool that removes the bias caused by unmeasured confounding provided that key assumptions
(some of which are also untestable) are met.
Results When instruments are valid, IV methods provided unbiased treatment effect estimation in the presence of unmeasured confounders.
However, the standard error of the IV estimate is higher than the standard error of non-IV estimates, e.g., regression and propensity score
methods. Sensitivity analyses provided insight about the robustness of the IV results to the plausible degrees of violation of assumptions.
Conclusions IV analysis should be used cautiously because the validity of IV estimates relies on assumptions that are, in general, untest-
able and difficult to be certain about. Thus, assessing the sensitivity of the estimate to violations of these assumptions is important and can
better inform the causal inferences that can be drawn from the study. Copyright © 2017 John Wiley & Sons, Ltd.
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INTRODUCTION

Estimating the beneficial or adverse effects of
medications is the primary goal of many
pharmacoepidemiologic studies. While randomized
trials often provide the least biased evidence for causa-
tion, their high costs, need for clinical equipoise and
the need for evidence that reflects the effect of the
intervention as applied in real-world settings often lead
to the conduct of observational studies, especially for
rare adverse effects.1 Moreover, the short duration of
randomized trials often prevents detection of delayed
treatment effects. In observational studies, the treatment
is not assigned at random. As a result, the straightforward
comparison of outcomes between different treatment
groups can be biased because of confounding, which is

the presence of systematic differences between patients
in different treatment groups on factors that affect out-
come. Confounding by measured factors can be adjusted
for using approaches such as multivariable regression,
propensity scores and inverse probability of treatment
weighting.2–5 However, the validity of the estimates ob-
tained from such methods relies on the assumption that
all confounders have been measured and adjusted for.
This untestable and frequently implausible assumption
is known as “exchangeability” or “no unmeasured
confounders”.
Instrumental variable (IV) analysis is an approach to

obtain unbiased treatment effect estimates even in the
presence of unmeasured confounders, provided that
certain assumptions are met.6–8 The key assumptions
for a pretreatment variable to be a valid instrument are:

A1) the IV is associated with the treatment
A2) the IV is not associated with unmeasured con-
founders after conditioning on measured confounders
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(i.e., after controlling for measured confounders by
regression or matching)
A3) the IV affects the outcome only through the
treatment (i.e., there is no direct effect of the IV on
outcome; this assumption is known as “exclusion
restriction”).

The key advantage of IV method is that it allows re-
laxation of the “no unmeasured confounders” assump-
tion. However, this advantage comes at the cost of
reliance on alternative assumptions and increased vari-
ance of the estimate of treatment effect. Particularly,
when IVs are weakly associated with the treatment,
IV analyses may lead to highly variable estimates,
i.e., wide confidence intervals. In this tutorial, we are
discussing the setting where the IV is reasonably
strong. Depending on the context, the IV assumptions
may be more plausible than the “no unmeasured con-
founders” assumption. Because of the reduced preci-
sion, IV analysis is recommended as the primary
analysis only when unmeasured confounding is a major
concern.9 In addition to their use in primary analyses,
IV methods can be considered for secondary or sensi-
tivity analyses of conventionally analyzed studies.10

In this tutorial, we illustrate the use of IV methods in
the context of an applied example examining the effect
on body mass index (BMI) of metformin versus sulfo-
nylureas as initial therapy for diabetes mellitus. In this
example, the outcome (BMI) is continuous rather than
dichotomous (e.g., occurrence of a major adverse
cardiovascular event). Nevertheless, the approach
outlined in this tutorial is readily applied to dichoto-
mous outcomes as well. See Discussion section for
more detailed information of IV analyses with binary
outcome. We restrict the study to new antidiabetic
drug users,11 who we define as persons who are pres-
ent in the study database for at least 180days before
receiving any antidiabetic drugs, and then were started
on an initial therapy with either metformin or a sulfo-
nylurea, with a baseline glycosylated hemoglobin
(HbA1c) of ≥7%. The outcome is the first measurement
of BMI after two years of subsequent follow-up. Note
that because we are adjusting for the baseline BMI,
our analysis is conceptually equivalent to an analysis
of the outcome of change in BMI. The applied study
was conducted using The Health Improvement Net-
work (THIN), a UK-based medical record database that
is collected from over 500 practices.12 In general, med-
ical records are not collected for scientific purposes,
and it is likely that some important confounders are un-
measured. Specifically, other studies in the UK primary
care setting have found metformin versus sulfonylurea
to be highly confounded by indication, with an overall

tendency for recipients of sulfonylurea to have a higher
burden of comorbidities. For example, in one cohort
study, 10% of metformin users had a history of cancer
versus 14% of sulfonylurea users; similarly, 10% of
metformin users had a history of major adverse cardio-
vascular events versus 16% of sulfonylurea users, and
the Charlson comorbidity index of metformin users
was lower than that of sulfonylurea users (1.3 vs. 1.7)
(p<0.001 for all comparisons). Such a higher baseline
burden of disease, particularly cancer, could plausibly
also be associated with decline in BMI over time.
Therefore, baseline disease burden represents a poten-
tial confounder for this comparison that would be diffi-
cult to fully measure and adjust for using conventional
means.13 This helps to motivate the use of IV methods
in our example. The measured baseline characteristics
include BMI, glycosylated hemoglobin (HbA1c), gen-
der and marital status. After excluding patients with
missing baseline values for one of these variables, we
identified 44517 eligible patients. Eighty-eight percent
(39102) initiated metformin, while 12% (5415) initi-
ated a sulfonylurea. Note that the prescription rates
are roughly equal from 1997 to 2002, but there is a
marked increase in the use of metformin and marked
reduction in the use of sulfonylureas in the subsequent
years that created the overall difference in the prescrip-
tion rates (Figure 1).

STEP 1. SELECTAN INSTRUMENTALVARIABLE

The most challenging task in an IV analysis is to
identify a valid IV. IVs that are commonly used in
pharmacoepidemiology include:

Figure 1. Rate of use of first line therapy over time [Colour figure can be
viewed at wileyonlinelibrary.com]
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i. Randomized encouragement trials. In an encour-
agement experiment, subjects selected at random
are encouraged to take a treatment, and the remain-
der receive no encouragement.14–16 These trials
serve as prototype for the IV argument where the
randomized encouragement assignment is a poten-
tial IV. By design, the independence of the IV and
unmeasured confounders is guaranteed. The only
concern is that the randomized encouragement
might have a direct effect on the outcome. Note
that randomized trials with nonadherence are spe-
cial cases of randomized encouragement trials,
and random assignment can be used as an IV.

ii. Calendar time. The popularity of one treatment
versus another often changes over time.17–20 Thus,
calendar time can be considered as a potential IV.
However, calendar time could violate the assumption
that the IV is independent of unmeasured
confounders if the study population’s unmeasured
characteristics (e.g., dietary habits in the diabetes ex-
ample) change systematically during the study period.
Also, calendar time might have a direct effect on the
outcome rate because there are other changes in the
way that patients are being treated over time (e.g.,
introduction of interventions to increase exercise).

iii. Provider preference. Naturally occurring variation
in medical practice can be used to construct an
IV.10 Brookhart et al.21 showed that under the
assumption that systematic differences among
patients in different practices are fully captured by
the measured covariates, an IV can be defined as
the treatment (e.g., metformin vs. sulfonylurea) that
has higher chance of being prescribed by a
particular provider or center. Different factors may
contribute in providers’ preference including
different trainings and guidelines or marketing by
pharmaceutical companies. However, provider
preference cannot be directly observed and, thus,
has to be inferred through a surrogate measure-
ment.21 Investigators have proposed different
surrogates for provider preference based on the pre-
vious prescription pattern for a particular provider,
such as the most recent prescription issued by the
provider before the current patient, or the treatment
that has been most frequently prescribed by the
provider over a fixed period of time22–24. A major
concern in the provider preference-based IVs is that
providers who prescribe one treatment more often
(e.g., metformin) may also provide better care in
other ways, such as weight-reduction counseling.
This could violate the assumption of no direct effect
from the IV to the outcome. Another concern is that
patients who go to providers who prefer treatment A

may differ in characteristics than patients who go to
providers who prefer treatment B. For example, it is
conceivable that doctors in urban area are more
likely to prescribe metformin because they see more
patients with sedentary habits compared to doctors
in rural area. This would violate the assumption that
the IV is independent of unmeasured confounders if
the living area is not recorded in the data.

iv. Geographic distance to specialty care provider.
Sometimes, one of the treatments is only provided
by specialty providers, for example, because it
requires expensive equipment, such as designated
trauma centers.18,25–28 In these cases, the geo-
graphic distance that a patient has to travel to reach
the nearest specialty provider can be used as an IV.

v. Insurance plan. Variations in insurance plan reim-
bursement or drug formulary policies can be used
to construct an IV.17,29 For example, a treatment
option with lower co-payment amount can be an
IV because it encourages the provider to prescribe
the more affordable treatment. The validity of the
insurance plan as an IV relies on the assumptions
that there is no unmeasured confounding between
patients in different types of plans.

Figure 1 presents time trends in the use of sulfonyl-
ureas and metformin from 1997 to 2011. During this
period, the use of metformin rose very quickly, and
the use of sulfonylureas declined. This variability led
us to define our IV based on both provider preference
and calendar time. In particular, we defined the IV
within each general practitioner practice as the pro-
portion of patients started on metformin versus a sulfo-
nylurea over two year timeframes (i.e., 1997–1998,
1999–2000, 2001–2002, 2003–2004, 2005–2006,
2007–2008 or 2009–2011). We assigned IV=met if
the average was more than 50% and IV= sulf otherwise.
Thus, the value of IV was allowed to change over time
for each practice. Note that while many IV analyses use
the apparent preference of the individual prescriber as
the IV, THIN data do not allow one to distinguish
among individual prescribers within a practice. There-
fore, we used practice preference to define the IV.
Below, we refer to practice preference IV as PP IV.

Further identifying assumptions

Assumptions A1–A3 are the core assumptions for a
valid IV.7 In our example, A1 asserts that the IV based
on provider preference is associated with the treatment
choice of metformin versus sulfonylurea. Assumption
A2 implies that after conditioning on the measured
covariates, e.g., baseline BMI and HbA1c, patients
who go to providers who prefer metformin do not have
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different characteristics than patients who go to pro-
viders who prefer sulfonylurea. Also, Assumption A3
means that the quality of care does not vary across pro-
viders with different preferences.
When the effect of treatment is constant among the

population under study, i.e., there is no effect modifi-
cation by any variable; IV methods can be used to
estimate the treatment effect under the assumptions
above. Even in the presence of effect modification,
IV methods can still be used to estimate the treatment
effect among a particular type of patients, so-called
“compliers” or “marginal patients”.30 These are pa-
tients who would receive the treatment indicated by
the IV regardless of the value of the IV. In our
example, compliers or marginal patients are those
who would be always prescribed metformin if that
was the practice preference, and would be always
prescribed a sulfonylurea if that was the practice pref-
erence. The average treatment effect for this group of
patients is called the complier average treatment effect,
also known as the local average treatment effect
(LATE). For IV methods to estimate the LATE, we
need another assumption, namely monotonicity. In
the context of the practice preference IV, this means
that there are no “defier” patients who would be pre-
scribed metformin if they were seen in a practice that
preferred sulfonylureas but would be prescribed a sul-
fonylurea if they were seen in a practice that preferred
metformin. Monotonicity is plausible when the IV
does not provide any disincentive for the treatment
indicated by the IV,31,32 as seems to be the case in
our example. This assumption is automatically satisfied
for randomized encouragement trials in which only
subjects encouraged to receive the treatment are able
to receive it. Monotonicity seems to be plausible in
our example, because there is no clinical reason that
patients who have been prescribed metformin when
the practice preference was sulfonylurea would have
been prescribed sulfonylurea when the practice pre-
ference was metformin. In fact, it is very likely that
patients who have been prescribed metformin when
the practice preference was sulfonylurea be metformin
always takers.
Under the monotonicity assumption, there are two

other subgroups of patients besides compliers: “always
takers” and “never takers”. For example, patients with
high BMI might be always prescribed metformin re-
gardless of whether that practice’s preference IV was
a sulfonylurea or metformin, i.e., metformin always
takers, because physicians might be concerned about
the possibility of additional weight gain caused by
sulfonylureas.33,34 IV methods are not helpful for
estimating the treatment effect among these patients

because their treatment status does not change with
the IV value, and thus their potential outcome is the
same for both levels of the IV. For example, because
of the potential weight gain caused by sulfonylureas,
patients with high BMI are likely to be metformin
always takers, and IV methods cannot be used to esti-
mate the effect of metformin on this group of patients.

STEP 2. ASSESS THE IV ASSUMPTIONS AND
STRENGTH OF THE IV

The validity of an IV estimator depends on whether
assumptions A1–3 hold. It is therefore crucial to empir-
ically assess whether the candidate IV satisfies all the
required assumptions.

Assessing the association between the IV and the
treatment and strength of the IV

The ability of an IV analysis to remove confounding
depends on how strongly the treatment and the IV
are associated, conditioning on measured covariates.
Thus, an IV is defined as a weak IV if it is not a strong
predictor of the treatment after controlling for the
measured covariates. The strength of the IV can be
assessed in at least two ways: (i) calculating the pro-
portion of compliers by calculating the difference of
the treatment assignment rate among subjects across
the values of the IV; and (ii) calculating the F-statistic
with 1 degree of freedom for the IV in a regression
model that includes treatment as dependent variable
and the IV and measured covariates as independent
variables. The proportion of compliers represents the
effective sample size in the IV analysis. So when the
proportion is small, the IV analysis is making use of
only a small proportion of the data and, thus, may have
lower statistical power. In our example, the proportion
of compliers is 0.43 and defined as a difference of
sulfonylureas prescription rate among patients across
providers with sulfonylureas versus metformin prefer-
ences. The F-statistic is 1601 when calculated in a
model that includes antidiabetic treatment option indi-
cator as the dependent variable and the PP IV, baseline
BMI, baseline Hba1c, marital status and gender as
independent variables. Stock et al.35 suggest that an
F-statistic less than 10 represents a weak IV. However,
we should keep in mind that the F-statistic is an
increasing function of the sample size. Thus, in large
datasets, the F-statistic may be large even for weak
IVs.22 Another potential way to assess the strength of
an IV is using the partial r2 when adding the IV to a
regression model that includes treatment as dependent
variable and the IV and measured covariates as
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independent variables. The partial r2 indicates the per-
centage of unexplained, i.e., not explained by the mea-
sured covariates included in stage 1 model, variance
that can be explained by the IV. However, the partial
r2 can be small even for moderately strong IVs, which
may make assessing the strength of IVs difficult. For
example, if the IV increases probability of taking treat-
ment from 0.2 to 0.4 (so 20% compliers) and half of the
people have IV=1, then partial r2=0.048 and even if
the IV increases probability of taking treatment from
0.25 to 0.75 (so 50% compliers) and half of the people
have IV=1, then partial r2=0.25.
A weak IV can produce biased estimators,36,37 mag-

nify existing bias caused by small violations to the IV
assumptions and introduce imprecision, manifest as
wide confidence intervals.38–40 In our example, the
PP IV seems to be a reasonably strong IV according
to the proportion of compliers and the F-statistic.

Assessing the independence of the IV and unmeasured
confounders

The independence assumption of the candidate IV and
unmeasured confounders (A2) cannot be completely
tested using observed data. However, looking at the
balance of measured covariates between values of the
IV may provide insight about the validity of this
assumption. This is similar to the insight that is pro-
vided by examining the balance of baseline covariates
among exposure categories (the usual Table 1 of a
cohort study) as a clue for potential unmeasured con-
founding in a conventional cohort study. Specifically,
imbalance in measured confounders across categories
of the IV makes assumption A2 less plausible because,
for example, if the measured covariates are a proxy of
the unmeasured confounders, an association between
the measured confounders and the IV suggests that

there will be an association between the IV and un-
measured confounders.
Table 1 presents the standardized difference as a

measure of the imbalance between the measured co-
variates among patients with different treatments and
PP IVs. For a given covariate, say baseline BMI, the
standardized difference between the PP IV groups is
the difference between the average of baseline BMI
among patients who have seen a practice with sulfo-
nylureas and metformin preference divided by the
pooled standard deviation of the two groups. The stan-
dardized difference between the treatment groups is
defined similarly. Between the treatment groups, the
imbalance is considered potentially important if the
standardized difference is greater than 0.2 41, while
between the IV groups the imbalance is potentially
important if it is greater than 0.2 multiplied by the
proportion of compliers, i.e., 0.2×0.43=0.086. This
is because the bias in an IV analysis when there are
differences between the IV groups is inflated by
(1/proportion of compliers) compared to the bias in a
propensity score or regression analysis when there are
differences between the treatment groups.9,42 Although
the imbalance is reduced among the IV groups com-
pared to the treatment group, the baseline BMI and
HbA1c are still imbalanced. To further investigate this
imbalance, we fit two separate models by regressing
the baseline BMI and HbA1c on the IV and all the mea-
sured covariates. The p-values of the coefficients of the
IV in these two models are 0.027 and 0.069, respec-
tively, meaning that PP IV has stronger association
with the baseline BMI than the baseline HbA1c, which
is consistent with our results in Table 1. Thus, these
variables must be controlled for by including them in
the IV analysis. Further, this imbalance in measured
variables reduces the plausibility that unmeasured var-
iables are balanced. For example, the imbalance of the

Table 1. THIN Data. Covariate balance for treatment and IV groups. Bias1 and Bias2 are the denominator and numerator of the Bias ratio, respectively

Treatment groups

Metformin Sulfonylureas Standardized difference Bias1

N 39 102 5415

Sex (female) 17.5% 17.2% 0.06 0.03
Marital (married) 3.4% 2.8% 0.01 0.003
Baseline BMI, mean (SD) 32.38(6.43) 27.14(5.13) 0.91 5.24
Baseline HbA1c, mean (SD) 9.01(1.79) 9.50(2.07) 0.25 �0.49

IV groups
Metformin Sulfonylureas Standardized difference Bias2

Sex (female) 41.9% 40.5% 0.03 �0.03
Marital (married) 17.5% 15.4% 0.06 0.05
Baseline BMI, mean (SD) 31.78(6.43) 30.12(6.51) 0.27 �3.90
Baseline HbA1c, mean (SD) 9.06(1.83) 9.29(1.78) 0.13 0.54
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baseline BMI among the IV groups can be related to
the practice location or region, which in that case,
assuming that prescribing preferences differ systemati-
cally by region, would suggest that other unmeasured
characteristics related to geographical locations might
be imbalanced as well.
The bias caused by failing to adjust for a covariate in

an IV analysis is approximately proportional to the
difference of the average of the covariates across the
values of the IV divided by the difference of the treat-
ment assignment rate among subjects across the values
of the IV. Similarly, the bias caused by failing to adjust
for a covariate in a non-IV analysis is approximately
proportional to the difference of the average of the
covariate across the values of the treatment options.
Brookhart and Schneeweiss42 proposed the bias ratio
to assess the association between the candidate IV
and measured covariates. The bias ratio is the ratio of
the bias between an IV analysis and a non-IV analysis
that both fail to adjust for a covariate. In our example,
the numerator of the bias ratio of the baseline BMI is
the difference of the average baseline BMI across the
values of the PP IV divided by the difference of the
sulfonylureas assignment rate among subjects across
the values of the PP IV. The denominator of the bias ra-
tio is the difference of the average baseline BMI across
the values of the treatment options (equation given in
Appendix A). Bias ratios less than one indicate that
the IV estimator is less biased than the non-IV estima-
tor, while a bias ratio greater than one indicates that the
IV estimator is more biased than the non-IV estima-
tor.9,43 The numerator and the denominator of the bias
ratio correspond to the bias in the IV and non-IV
analysis, respectively. In Table 1, the bias ratio
calculated as Bias2/Bias1 shows that, for marital status
(0.05/0.003>1) and baseline HbA1c (0.54/0.49>1),
there would be more bias incurred from omitting these
covariates from adjustment in the IV analysis than a
non-IV analysis. This may signal potential IV outcome
confounding by unmeasured covariates.

Assessing the exclusion restriction (ER) assumption

The exclusion restriction (ER) assumption (A3) is that
the IV affects the outcome only through the treatment.
In many clinical settings, where patients are taking
other treatments concomitantly with the treatment
under study, exploring the association between the IV
and the concomitant treatments can help to assess the
validity of the ER assumption. Specifically, assuming
that the concomitant treatments affect the outcome,
the ER assumption will be violated if an IV for the
treatment of interest also affects prescribing of

concomitant treatments.10 For example, some antidia-
betic treatments may be more likely to be prescribed
to patients concomitantly with statins (lipid lowering
treatments).44 There is a clinical sense that taking
statins may cause weight gain.45 Assuming that these
conjectures are true, if the IV (e.g., practice preference)
for one antidiabetic treatment versus another is associ-
ated with prescribing statins, the IV analysis may be bi-
ased for the effect of antidiabetic treatments on BMI. In
fact, our analysis shows that the proportion of statin
prescription among providers with sulfonylureas and
metformin preference are 0.65 and 0.80, respectively.
We also regressed the statin use on the PP IV and the
measured covariates. Because the coefficient of PP IV
was significant (p-value<0.001), if our conjecture
about the association between statin and weight gain
is true, our proposed PP IV may violate the ER
assumption.
It is important to note that although it may be

intuitively appealing to assess the validity of the ER
assumption by looking at the p-value of the PP IV in a
model that includes the BMI after two years of initiating
the antidiabetic treatment as the dependent variable, and
the PP IV, baseline BMI and baseline Hba1c as indepen-
dent variables, such analysis could lead to falsely
concluding that the ER assumption is violated. In fact,
Baiocchi et al.9 showed that the coefficient of the IV is
usually nonzero even when the IV is valid.

STEP 3. ESTIMATE THE TREATMENT EFFECT

The two-stage least squares (2SLS) estimator is a com-
monly used approach to estimate the treatment effect in
the form of a risk difference for a dichotomous
outcome. In the first stage, exposure is the dependent
variable, and the IV and measured covariates are the
independent variables. This model gives the predicted
probability of being exposed (e.g., being assigned to
sulfonylurea) given the IV and measured covariates.
In our diabetes example, the first stage model includes
the treatment received (metformin vs. sulfonylurea) as
the dependent variable and the practice preference IV,
baseline BMI, baseline Hba1c, marital status and gen-
der as independent variables. In the second stage, the
outcome is the dependent variable, and the independent
variables are the predicted value of the exposure vari-
able given the IV and measured covariates (i.e., the
fitted values from the first stage) and measured covari-
ates. The coefficient for the association of the predicted
value of the treatment with the outcome in the second
stage regression is the IV estimator of treatment ef-
fect.46 In our example, the second stage model includes
BMI as the dependent variable and the predicted value
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of the first stage model (i.e., predicted probability of re-
ceiving a sulfonylurea vs. metformin), baseline BMI,
baseline Hba1c, marital status and gender as indepen-
dent variables. The coefficient for the association of
the predicted value of the treatment with the outcome
is the estimated causal effect of sulfonylurea (assuming
that sulfonylurea is coded as 1 and metformin is coded
as 0) on change in BMI among compliers, i.e., those
who would be prescribed metformin if that was the
practice preference and would be prescribed a sulfonyl-
urea if that was the practice preference. Note that al-
though the outcome is BMI after 2years of treatment
initiation, because we are adjusting for the baseline
BMI, our analysis is conceptually equivalent to an
analysis of the outcome of change in BMI.
The standard error from the second stage model

systematically under-estimates the true standard error
of the 2SLS estimator because the standard error from
the second stage regression does not take into account
for the sampling error in the first stage estimate of the
probability of exposure.47–49 One can obtain a 2SLS
estimator with a valid standard error from “ivreg” in
Stata, or the R package “ivmodel”. Alternatively, the
standard errors of the 2SLS estimators can be estimated
using bootstrap resampling, with both stages of 2SLS
estimation replicated in each resample.

Example: Analysis of THIN data

Table 2 shows the treatment effect estimates obtained
by the following estimators:
• 2SLS IV1: the 2SLS IV estimator that does not
include any covariates.

• 2SLS IV2: the 2SLS IV estimator that only includes
baseline BMI.

• 2SLS IV3: the 2SLS IV estimator that only includes
baseline HbA1c.

• 2SLS IV4: the 2SLS IV estimator that includes both
baseline BMI and HbA1c.

• 2SLS IV5: the 2SLS IV estimator that includes
gender, marital status, baseline BMI and HbA1c.

• Regression1: non-IV regression estimator that is
obtained by regressing the outcome on the treatment
and baseline HbA1c.

• Regression2: non-IV regression estimator that is
obtained by regressing the outcome on the treatment
and baseline BMI.

• Regression3: non-IV regression estimator that is
obtained by regressing the outcome on the treatment,
baseline BMI and baseline HbA1c.
The IV analyses 2SLS IV1 and 2SLS IV3 that did

not include the baseline BMI, estimated that, contrary
to their known effect,50 sulfonylureas reduced BMI
by 2.31 (95%CI: (�3.19,�1.43)) and 2.35 (95%CI:
(�3.27,�1.43)) BMI units, respectively, compared
with metformin. This is likely due to the association
between the IV and baseline BMI (Table 1). In con-
trast, adjusting for the baseline BMI in the 2SLS IV
analyses 2SLS IV3, 2SLS IV4 and 2SLS IV5 estimated
that sulfonylureas increased BMI by 1.27 (95%CI:
(0.89,1.65)), 1.17 (95%CI: (0.79,1.55)) and 1.17
(95%CI: (0.80,1.55)) BMI units, respectively. Note
that inclusion of baseline HbA1c in the analysis
2SLS IV4 does not change the estimated effect by
much compared with 2SLS IV3 analysis. This is
because the imbalance of baseline HbA1c among IV
groups is small, as seen in Table 1. Similarly, because
gender and marital status are balanced across IV
groups (Table 1), the estimated effect by 2SLS IV5 is
almost identical to the one obtained by 2SLS IV4.
Comparing the results of the different IV models
shows the importance of including the measured co-
variates in the IV analysis, particularly those that are
imbalanced among the IV groups. While Regression1
estimate shows sulfonylureas reduced BMI by 4.09
(95%CI: (�4.27,�3.91)), the other two regression
estimates Regression2 and Regression3 that include
baseline BMI in the models show that sulfonylureas
increased BMI by 0.74 (95%CI: (0.66,0.82)) and
0.64 (95%CI: (0.56,0.72)), respectively. Note that
the standard error of the latter two regression models
is about five-fold lower than the standard error of
2SLS IV2, 2SLS IV4 and 2SLS IV5 that also adjust
for the baseline BMI. In general, IV-based estimators
have higher variance compared to non-IV estimators,
and the difference is bigger when the IV is not strong.40

We were concerned that the IV estimates in Table 1
may be affected by the difference in the prevalence
of metformin and sulfonylurea in our dataset (88%
metformin vs. 12% sulfonylurea). To examine the

Table 2. THIN Data. Estimating the effect of metformin versus sulfonyl-
urea on BMI. Regression1 represents the standard regression approach
which estimates the treatment effect by including treatment and baseline
HbA1c into a regression model; Regression2 is similar to Regression1 but
includes baseline BMI instead of baseline HbA1c; Regression3 includes
gender, marital status, baseline BMI and HbA1c into a regression model.
2SLS IV1 does not include any covariates; 2SLS IV2 includes only baseline
BMI; 2SLS IV3 includes only baseline HbA1c; 2SLS IV4 includes both
baseline BMI and HbA1c; 2SLS IV5 includes gender, marital status, base-
line BMI and HbA1c

Est. S.D. 95%CI
Regression1 �4.09 0.09 (�4.27,�3.91)
Regression2 0.74 0.04 (0.66,0.82)
Regression3 0.64 0.04 (0.56,0.72)
2SLS IV1 �2.31 0.44 (�3.19,�1.43)
2SLS IV2 1.27 0.19 (0.89,1.65)
2SLS IV3 �2.35 0.46 (�3.27,�1.43)
2SLS IV4 1.17 0.19 (0.79,1.55)
2SLS IV5 1.17 0.19 (0.80,1.55)
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sensitivity of our estimate the imbalance in the rate of
treatment prescriptions, we restricted the study period
to 1997–2004 and estimated the treatment effect using
a same model used in 2SLS IV5. In the restricted pe-
riod, the prescription rates of sulfonylureas and
metformin are 27% and 73%, respectively. We used
the 0.5 cut-point to construct the IV just as we did for
unrestricted data, i.e., 1997–2011. The estimated treat-
ment effect in the 2SLS model that includes gender,
marital status, baseline BMI and HbA1c as covariates
is 0.98 with standard error 0.13 (95%CI: 0.72–1.22).
This point estimate is very close to the unrestricted
result presented in the paper as 2SLS IV5, which is
1.17 with a standard error 0.19. Note that despite the
smaller sample size in the restricted analysis, the esti-
mated standard error is smaller than the unrestricted
analysis. This suggests that the dramatic treatment rate
imbalance does not invalidate the effect estimate but it
leads to an estimate with higher standard error.

STEP 4. PERFORM SENSITIVITY ANALYSIS TO
ASSESS THE EFFECT OF VIOLATIONS OF
ASSUMPTIONS

In general, IV assumptions cannot be completely
tested, and the aforementioned assessment methods
can provide incomplete insight about the validity of
these assumptions. Thus, sensitivity analysis is war-
ranted to quantify how sensitive the estimates are to
the possible violations of the underlying assump-
tions.7,26,38,42,51 The goal of sensitivity analysis is to
assess how departures from certain assumptions
may alter the study’s conclusions. All of the model
equations related to this section are presented in
Appendix B, where we also provide a detailed discus-
sion of how to perform sensitivity analysis in the con-
text of 2SLS IV analysis.

Sensitivity to the violation of assumption A2

Suppose there is an unmeasured confounder that is as-
sociated with the IV. We can think of the unmeasured
confounder as the component of confounding that is
not captured by measured variables. That is, we can
assume that the unmeasured confounder is unassoci-
ated with measured covariates, because if it were asso-
ciated with measured covariates then controlling for
them would also reduce the confounding associated
with that unmeasured variable. For sake of the sensi-
tivity analysis, we can also assume that the unmea-
sured confounder has been standardized to have a
mean of zero and a variance of 1. We can further
assume a range of plausible values for δ, the effect of

a one standard deviation increase in the unmeasured
confounder on the mean of the outcome, and τ, the
effect of the IV on the unmeasured confounder,
expressed in standard deviation units.52 Then, the true
treatment effect can be identified as a function of a
two-dimensional sensitivity analysis (δ, τ) (see
Appendix B.1 for model equations). If the treatment
effect estimate does not change dramatically in a plau-
sible range of sensitivity parameters (e.g., the sign
remains the same or the confidence interval remains
on the same side of the real line), we can conclude that
the estimate is relatively insensitive to the plausible
degrees of violation of A2 and the overall conclusion
is robust.
In our example, the observed association between

the IV and the baseline BMI in Table 1 suggested that
the IV might be associated with unmeasured con-
founders. To assess the effect of this potential violation
of the IV assumptions, we performed the sensitivity
analysis discussed in this section. Table 3 shows that
the effect of sulfonylureas on BMI would still be statis-
tically significantly positive if there were an unmea-
sured confounder that increased follow-up BMI by
0.6 BMI units for a one standard deviation increase in
the unmeasured confounder and was τ =0.5 standard
deviation units higher in practices with a sulfonylurea
preference than in practices with a metformin prefer-
ence. A stronger effect of an unmeasured confounder
on increasing follow-up BMI would result in a non-
significant estimated effect of sulfonylureas on weight
gain (e.g., see the row τ =0.5 and δ=0.7 in Table 3).

Sensitivity to the violation of assumption A3

The ER assumption is violated when there is a direct
effect from the IV on the outcome. For example, con-
sidering practice preference as an IV, practices that
issue sulfonylureas more often, i.e., IV=1, may deliver
sulfonylureas better by monitoring the BMI more care-
fully or better dosing the treatment than those that issue

Table 3. THIN data. Sensitivity analysis. δ is the effect of a one standard
deviation increase in the unmeasured confounder on the mean of the out-
come. τ is the effect of the IV on the unmeasured confounder, expressed
in standard deviation units. β is the effect of sulfonylureas on BMI

τ δ β 95%CI

0.0 0.0 1.17 [0.79,1.55]
0.1 �3.0 1.91 [1.53,2.29]
0.5 �3.0 4.89 [4.41,5.37]
0.5 �0.5 1.79 [1.41,2.17]
0.5 0.6 0.43 [0.06,0.79]
0.5 0.7 0.30 [�0.07,0.67]
0.5 3.0 �2.55 [�3.00,�2.11]
0.1 3.0 0.43 [0.06,0.79]
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Copyright © 2017 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2017
DOI: 10.1002/pds



metformin more often, i.e., IV=0. A sensitivity analy-
sis that assesses the effects of such a violation employs
a sensitivity parameter ρ that quantifies the amount of
treatment effect modification across the different
values of the IV.9 In other words, the sensitivity param-
eter is the coefficient of the interaction term between
the treatment options and the IV in the outcome model
that includes as independent variables, in addition, the
treatment indicator, measured covariates (see
Appendix B.2 for model equations). We can estimate
the treatment effect for plausible values of the sensitiv-
ity parameter ρ. If the estimate yields similar substan-
tive conclusions across all plausible values of ρ, we
can conclude that it is insensitive to the violation of
assumption A3.
Our sensitivity analysis for the exclusion restriction

assumption in THIN data suggests that sulfonylureas
use is associated with weight gain as long as ρ≤0.6.
In particular, ρ≤0.6 results in a treatment effect
estimate of 0.37 with a 95% confidence interval
[0.00,0.74]. In other words, if being prescribed sulfo-
nylurea by a practice that prescribes sulfonylureas
more often increases the BMI by more than 0.6, i.e.,
ρ≤0.6, compared to a practice that prescribes more
metformin, then the effect of sulfonylureas on weight
gain would not be significantly higher than metformin.
This can happen if, for example, practices that pre-
scribe metformin more often monitor sulfonylureas
better than those who prescribe sulfonylureas more
often.

STEP 5. SUMMARIZING THE IV ANALYSIS
RESULTS

In our example, the PP IV seems to be reasonably
strong with 43% compliance rate. We have assessed
the plausibility of the independence assumption of
the candidate IV and unmeasured confounders (A2)
by looking at the balance of measured covariates
between values of the IV. Although the imbalance is
reduced among the IV groups compared to the treat-
ment group, the baseline BMI and HbA1c are still
imbalanced. This imbalance in measured variables
reduces the plausibility that unmeasured variables are
balanced. We were also concerned about the validity
of the ER assumption. These concerns encouraged us
to perform sensitivity analysis, and the results suggest
that the effect of sulfonylurea on weight gain is signif-
icantly more than metformin for moderate violations
of the assumptions. However, when the violations
are severe, then the treatment effects are not signifi-
cantly different.

IV ANALYSIS WITH BINARY OUTCOMES

Most of the IV analysis literature is focused on con-
tinuous outcomes. Having binary outcomes raises
additional challenges. Bhattacharya et al.53 showed
that the two-stage procedures for binary outcomes that
are analogous to 2SLS estimator do not, in general,
result in an unbiased treatment effect estimate. This
implies that, for example, replacing the second stage
model in the 2SLS procedure with logit model does
not result in a correct estimate of the odds ratio.54 On
the other hand, when the risk difference is the param-
eter of interest, the 2SLS does not constrain the
probability of the binary outcome to be between 0
and 1. More information about issues inherent in using
IV estimators for binary outcomes can be found else-
where.55–60

DISCUSSION

IV analysis is a powerful technique in
pharmacoepidemiologic studies where the investigator
has good reason to suspect unmeasured confounding.
However, IV analysis has to be used cautiously
because the validity of IV estimates relies on assump-
tions that are, in general, untestable and impossible to
be certain about. Thus, assessing the sensitivity of the
estimate to violations of these assumptions is impor-
tant and can strengthen the causal inferences that can
be drawn from the study. We have introduced sensitiv-
ity analyses for the two untestable assumptions, i.e.,
independence of the IV and unmeasured confounders
and the ER assumption. We first assume a range of
plausible values for the sensitivity parameters and then
estimate the treatment effect as a function of these
parameters. If the treatment effect estimate does not
change dramatically in a plausible range of sensitivity
parameters, we can conclude that it is insensitive to the
plausible degrees of violation of assumptions.
The ability of an IV analysis to remove confounding

depends on how strongly the treatment and the IV are
associated. Weak IVs result in unstable estimates with
very wide confidence intervals that can significantly
affect the power of the analysis. Also, weak IVs can
lead to estimates that are sensitive to small departures
from IV assumptions.39,61 Specifically, weak IVs
affect the power of the analysis and make the point es-
timates difficult to interpret as well as likely to diverge
more from the true effect than the biased but much
more stable conventional estimate, which accounts
only for the measured confounders.40

The key advantage of IV methods is that they allow
relaxation of the “no unmeasured14 confounders”
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assumption, which is required by regression,
matching, inverse probability weighting, and propen-
sity score methods. However, this advantage comes
at the cost of reliance on alternative assumptions and
increased variance of the estimate of treatment effect.
Investigators should consider IV analysis when un-
measured confounding is a major concern and IV
assumptions are plausible. In addition to their use in
primary analyses, IV methods can be considered for
secondary or sensitivity analyses of conventionally
analyzed studies.9,10 Because IV methods rely on a
different set of assumptions than the non-IV methods,
e.g., regression or propensity score based methods, it
is recommended to compare the estimates obtained
by these methods. If both approaches yield similar
conclusions, it is reassuring that the conclusion is
correct. If the answers are very different, one should
further investigate more on the plausibility of the
required assumptions and perform sensitivity analysis.
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tions of the underlying assumptions, especially
those untestable.
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