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WHY WE WANT TO USE EHRS FOR CLINICAL

RESEARCH

Data readily available
Often 100,000’s of Patients
Information collected over a variety of fields
Can study just about any clinical outcome
Representative Population
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WHY WE MAY Not WANT TO USE EHRS FOR CLINICAL

RESEARCH

DATA ARE NOT COLLECTED FOR RESEARCH

Data exist in disparate places
All patients have different pieces of information
Observational Data
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FOUR WAYS EHR DATA DIFFER FROM

TRADITIONAL CLINICAL DATA

1 We don’t have everything we want
2 Outcomes are not defined - need to phenotype data
3 Data are both longitudinal and cross-sectional
4 Data not observed randomly - Informed Presence
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CHALLENGE 1:
WE DON’T HAVE EVERYTHING WE WANT

Patients may seek care at multiple facilities
Most social health information is not recorded or reliable
Cannot expect death is reliably captured

Most people don’t die in the hospital
Preliminary work suggests EHRs have only 20% sensitivity
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ADDRESSING INCOMPLETENESS VIA DESIGN

Define local patient population
Live in the catchment of the health system
Require a certain a number of primary care appointments before
eligible for study

Contextual and proxy information can be linked in
Neighborhood for SES
Claims data for additional encounters
NDI/SSDI for death
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CHALLENGE 2
ISSUES OF DATA DEFINITION: WHAT IS A DIABETIC?

  Richesson RL, Rusincovitch SA, Wixted D, Batch BC, Feinglos MN, Miranda ML, Hammond WE, Califf RM, Spratt SE. A Comparison of Phenotype 
Definitions for Diabetes Mellitus. J Am Med Inf Assoc 2013 (epub ahead of print). http://www.ncbi.nlm.nih.gov/pubmed/24026307
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ISSUES OF DATA DEFINITION:
WHAT IS A DIABETIC?

ICD-9 250.x0 Expand. ICD-9
ICD-9 & 250.x2 (249.xx, 357.2, Abnormal Diabetes
250.xx (exclude type I) 362.0x, 366.41) HbA1c Glucose OGTT Meds

ICD-9 250.xx X
CMS CCW X* X*
NYC A1c Registry X
Meds X
DDC X X X X X X
SUPREME-DM X* X* X X X X
eMERGE X* X X X

* Distinction between Inpatient and Outpatient Visits
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DEFINITION DIFFERENCES

ANY TYPE2 TYPE2unsp

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05
1−Specificity (FPF)

S
e

n
s
it
iv

it
y
 (

T
P

F
)

Authoritative
Source 250 A1C CCW DDC4 MED NW SUP A1C_OR_MED

Diabetes Validation Results faceted by Endpoint

9 / 32



IMPACT OF POORER DEFINITIONS
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CHALLENGE 3:
DATA ARE BOTH LONGITUDINAL AND CROSS-SECTIONAL

EHR Data consist of cross-section of longitudinal data
Most data are stored in datamarts that cover fixed periods of time

Need to use methods for longitudinal data to model updating
exposures

We most often use time-varying Cox Models
Most analyses don’t account for a patient’s trajectory - just most
recent value

Since data are a cross-section no notion of time 0
Define “burn-in” periods to define eligibility
Use “burn-out” periods to define censoring
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CHALLENGE 4
DATA ARE INFORMATIVELY OBSERVED: INFORMED

PRESENCE

Collection of biases due to the fact that patients do not interact
randomly with a health system
Focus on what data are observed as opposed to what are
missing
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THREE TYPES OF INFORMED PRESENCE

1 We know more about sicker patients
2 Where a patient seeks care is informative
3 Health status driving encounters
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INFORMED PRESENCE I:
NEED TO ACCOUNT FOR NUMBER OF ENCOUNTERS

Regression of Depression on Weight Loss

Odds Ratio ∆ log(OR) ∆ OR
Minimally Adjusted 3.98 (3.81, 4.17) — —

+ No. Encounters 2.37 (2.26, 2.50) -0.52 -1.61
+ Comorbidities 2.82 (2.69, 2.96) -0.35 -1.16

+ No. Encounters & Comorb 2.30 (2.18, 2.42) -0.55 -1.68
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NUMBER OF ENCOUNTERS POTENTIAL CONFOUNDER

15 / 32



NEED TO ACCOUNT FOR NUMBER OF ENCOUNTERS

Median Number of Encounters
Sensitivity Without Condition With Condition

Depression 56.3% 6 38
Weight Loss 9.3% 7 45
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NUMBER OF ENCOUNTERS POTENTIAL CONFOUNDER
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INFORMED PRESENCE II:
WHERE A PERSON SEEKS CARE IS INFORMATIVE
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WHERE A PERSON SEEKS CARE IS INFORMATIVE
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LOCATION IMPACTS INFERENCE

Hazard Ratio for HgB A1C for time to Myocardial Infarction

Type Hazard Ratio P-value
Unadjusted 1.06 (1.01, 1.11) 0.026

Adjusted for Location 0.97 (0.92, 1.02) 0.178
OP Only 1.07 (1.00, 1.14) 0.044
ED Only 0.94 (0.89, 0.99) 0.022

Interaction between A1C and location
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WHICH HOSPITAL A PATIENT USES IS INFORMATIVE
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FACILITY IMPACTS INFERENCE

Odds Ratio for Cancer Status on Diabetes

Location Odds Ratio 95% CI
All Facilities 1.69 (1.36, 2.10)
DUMC Only 1.46 (1.15, 1.87)
DRH Only 0.89 (0.63, 1.26)
LCHC Only 1.08 (0.74, 1.56)
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REFERRAL HOSPITALS ARE AN Admixed POPULATION
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ADMIXTURE BIAS

Comparison of Local and Referral Patients at Cardiac
Catheterization Lab

Local Patients Referral Patients
Older Younger

More Comorbidities More severe valve disease
Disease due to ageing Disease due systematic factors

Better outcomes More follow-up procedures
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INFORMED PRESENCE III:
HEALTH STATUS DRIVING ENCOUNTERS

  

Biomarker Value / 
Health Status

Observed
Biomarker

Value

Outcome

Show to Clinic
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IMPACT OF INFORMATIVE VISIT PROCESS ON BIAS
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NEED AN UNDERLYING ASSOCIATION TO INDUCE BIAS
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ACCOUNTING FOR NUMBER OF ENCOUNTERS ATTENUATES BIAS
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TAKE HOME

Most analytic challenges arise based on how individuals seek
care
Need to be mindful of what may not be observed in EHR data
Many challenges are controllable via the study & cohort design
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