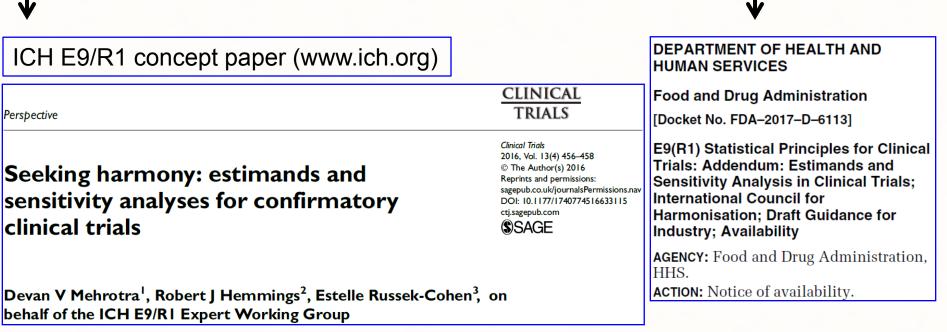
Draft ICH Guidance on Estimands and Sensitivity Analyses: Why and What?

Devan V. Mehrotra Merck Research Laboratories

Acknowledgement: ICH E9/R1 Expert Working Group


Conference on Statistical Issues in Clinical Trials University of Pennsylvania April 18, 2018

Background

- ICH = International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use
- ICH E9 (Statistical Principles for Clinical Trials; 1995)
 - Articulated foundational principles (randomization, double blind, interim analysis, non-inferiority, etc.)
 - Has served as a bedrock of regulatory guidance on major statistical aspects of confirmatory clinical trials
- 2013-14: regulatory statisticians proposed creation of an expert working group (EWG) to develop an <u>E9 addendum</u> (E9/R1) on estimands and sensitivity analyses
- Since Nov 2014, EWG (regulatory & industry statisticians) has met every 6 months and conducted monthly telecons

Background [2]

- 3-4Q 2017: E9/R1 draft was released for public comment across all the ICH regions (some review periods still open)
- The purpose of today's presentation is to address:
 - Why was E9/R1 deemed necessary?
 - What is in the draft E9/R1?

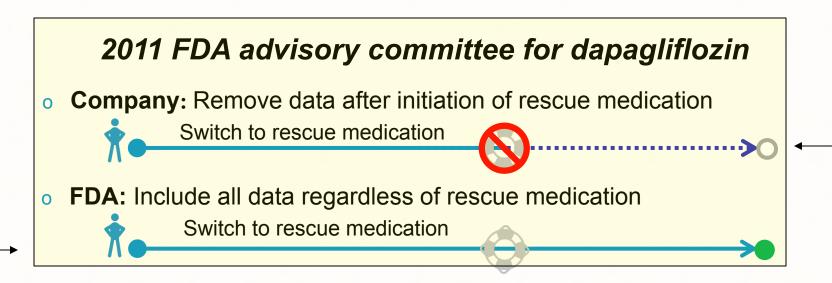
ICH E9/R1: Why?

Motivating Example

 Double-blind, randomized clinical trial, experimental antidiabetic drug (treatment A) vs. placebo (treatment B)

Endpoint = HbA1c change from baseline after 24 weeks

Objective: estimate the between-treatment difference in population endpoint means ($\delta = \mu_A - \mu_B$) and test H_{null} : $\delta = 0$


IMPORTANT

- Some patients will be unable to continue on assigned treatment due to intolerable side effects and/or experience inefficacy of assigned treatment
- Either reason may necessitate switching to or adding rescue medication to try and lower HbA1c

Endpoint/objective: is clinical question of interest clear? No

Motivating Example [2]

- What is the **treatment effect of interest**?
 - Combined effect of the assigned treatment and (potential) rescue medication?
 - Effect of assigned treatment only, i.e., without adding or switching to rescue medication if the assigned treatment has inefficacy or intolerability?
 - Something else?

Motivating Example [3]

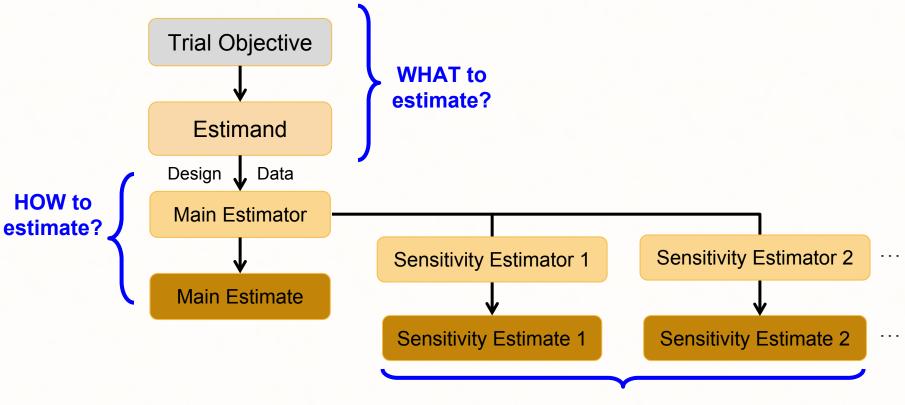
FD Protecting and Promoting Public Health Study 2013 - Sensitivity Analyses - Dapagliflozin 10 mg vs Placebo 0 0 0 Dapagliflozin 0 0 0 Placebo 12 16 20 24 12 16 20 24 0 8 LOCF ANCOVA MMRM Excl. Post-Resc. MMRM Incl. Post-Resc. 0.0 -Change in HbA1c -0.2 -0.4 -0.6 -0.8 16 20 24 12 16 20 24 8 12 8 0 0 Week

- What is the **treatment effect of interest**?
- Is this really a "sensitivity" analysis? No

U.S. Food and Drug Administration

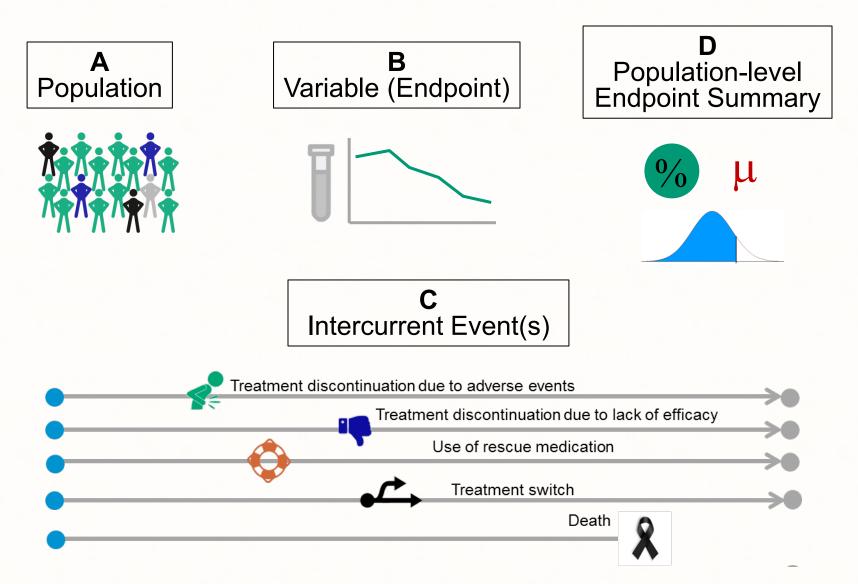
www.fda.gov

E9/R1: Why was it deemed necessary?

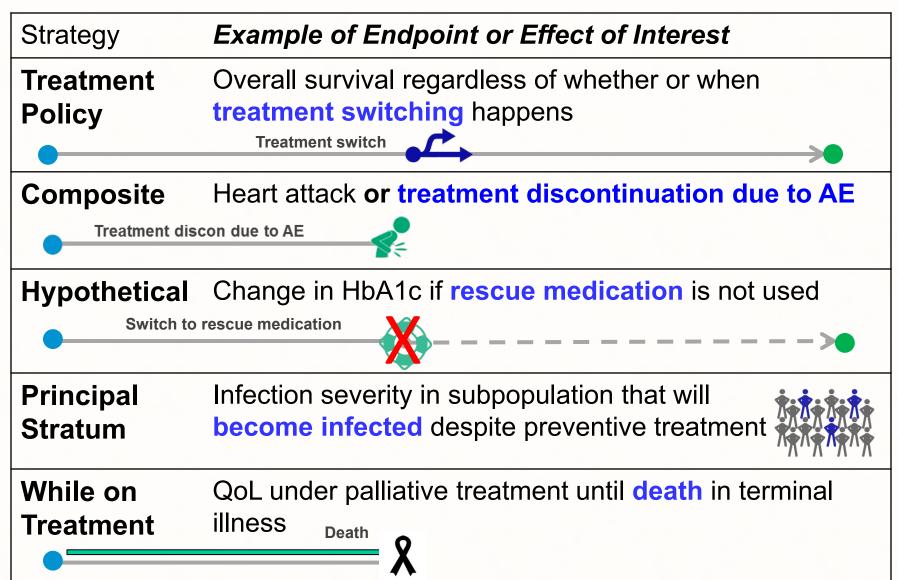

- **Comments from regulatory statisticians** on several clinical trial protocols & new drug applications (NDAs):
 - Insufficient clarity in objectives and related treatment effect parameters (i.e., estimands) of interest
 - Lack of logical connectivity between trial objectives, design, conduct, analysis and interpretation
 - Misalignment between "missing data" analysis methods and estimands of interest
 - Misunderstanding of the term "sensitivity analysis"

E9/R1 is intended to address these gaps, with a goal of improving clinical trial design/analysis/interpretation, NDA submissions and (ultimately) product labels

ICH E9/R1: What?


A Structured Framework

For a given trial objective: aligning target of estimation, design, method of estimation and sensitivity analysis



Sensitivity analysis (assess key assumptions)

Inputs for Defining an Estimand

Strategies for Addressing Intercurrent Events in the Scientific Question of Interest

Case Study: Diabetes

• Double-blind, randomized clinical trial, drug vs. placebo

Primary Objective: assess whether drug is more effective than placebo in lowering HbA1c without rescue medication (the latter was allowed, but to address a <u>different</u> objective)

Construction of Primary Estimand

Population: adults with type II diabetes (per intended label)

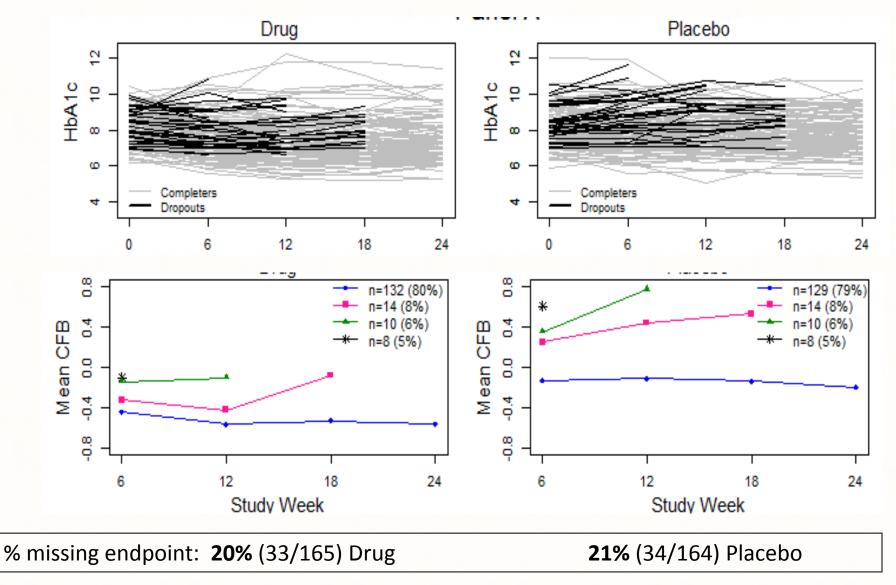
Endpoint: HbA1c change from baseline at 24 weeks

Intercurrent event: treatment effect of interest is based on the endpoint envisioned under hypothetical scenario of no rescue medication if assigned treatment has inefficacy/intolerability

Assigned treatment discontiued due to inefficacy or intolerability \rightarrow

Envisioned off-treatment follow-up without rescue medication

Population-level summary: mean of the endpoint


Case Study [2]

• **Estimand**: between-treatment difference in target population endpoint means for the treatment effect of interest (δ)

Statistical objectives

- Deliver acceptable point estimate and 95% CI for δ
- Test H_{null} : $\delta=0$ vs. H_{alt} : $\delta<0$ (with type 1 error rate $\leq \alpha$)
- Tackling rescue medication in the analysis
 - Given estimand of interest, HbA1c values after initiation of rescue medication can be discarded, resulting in "missing" endpoint data for such patients (and dropouts)
- Analysis challenge: all patients need to be included in the analysis (per the estimand), so how do we tackle the missing endpoint data problem?

Case Study [3]

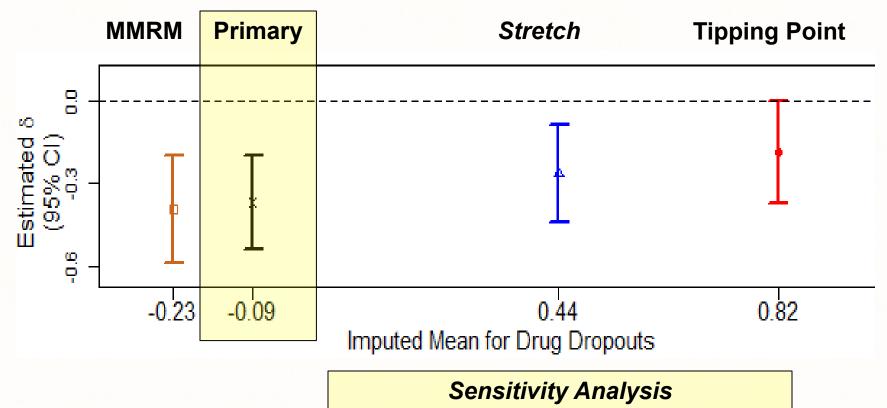
1 patient assigned to drug and 2 patients assigned to placebo were dropouts before week 6

Case Study [4]

Important: control-based mean imputation approach below is one of several options that can be considered in the (pre-specified) SAP

- Obs = endpoint observed, miss = endpoint missing
- π_i^{miss} = true Pr(endpoint missing under trt *i*) = 1 π_i^{obs}

Placebo	Drug
$\mu_P = \pi_P^{obs} \mu_P^{obs} + \pi_P^{miss} \mu_P^{miss}$	$\mu_D = \pi_D^{obs} \mu_D^{obs} + \pi_D^{miss} \mu_D^{miss}$
$\hat{\mu}_P = \hat{\pi}_P^{obs} \hat{\mu}_P^{obs} + \hat{\pi}_P^{miss} \hat{\mu}_P^{miss}$	$\hat{\mu}_D[c] = \hat{\pi}_D^{obs} \hat{\mu}_D^{obs} + \hat{\pi}_D^{miss} (\hat{\boldsymbol{\mu}}_P + \boldsymbol{c})$


 $\hat{\mu}_{P}^{miss}$ = estimate of μ_{P} assuming missing endpoints are MAR for placebo

Estimand: $\delta = \mu_D - \mu_P$ Estimation: $\hat{\delta}[c] = \hat{\mu}_D[c] - \hat{\mu}_P$

Primary Analysis: use c = 0 Sensitivity Analysis: increase c until Tipping Point

Details: Mehrotra, Liu, Permutt (2017; Pharm Stat)

Case Study [5]

- MMRM: mixed model repeated measures assuming MAR dropout for drug and placebo [shown for historical reference only]
- *Stretch*: imputed mean for drug dropouts matches estimated mean for placebo dropouts assuming MAR dropout for placebo
- *Note*: tipping point <u>after</u> *stretch* imputation ⇒ **robust** evidence of trtmt effect

Wrap Up

- The framework proposed in ICH E9/R1 is expected to:
 - Enable better planning and preparation of application dossiers for new drugs/vaccines/biologics
 - Strengthen understanding of decision-making by regulatory authorities and advisory committees
- The ICH E9/R1 expert working group:
 - Will begin to review/address collated public comments on the E9/R1 draft in June 2018 (Kobe, Japan)
 - Is developing a training slide deck to augment the E9/R1 text document; will include other case studies

